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Transverse Signal Decay Under the Weak Field
Approximation: Theory and Validation

Avery J.L. Berman1,2 and G. Bruce Pike1,2,3

Purpose: To derive an expression for the transverse signal
time course from systems in the motional narrowing regime,
such as water diffusing in blood. This was validated in silico
and experimentally with ex vivo blood samples.
Methods: A closed-form solution (CFS) for transverse signal
decay under any train of refocusing pulses was derived using
the weak field approximation. The CFS was validated via sim-
ulations of water molecules diffusing in the presence of spheri-
cal perturbers, with a range of sizes and under various pulse
sequences. The CFS was compared with more conventional
fits assuming monoexponential decay, including chemical
exchange, using ex vivo blood Carr-Purcell-Meiboom-Gill data.
Results: From simulations, the CFS was shown to be valid in
the motional narrowing regime and partially into the intermedi-
ate dephasing regime, with increased accuracy with increasing
Carr-Purcell-Meiboom-Gill refocusing rate. In theoretical calcu-
lations of the CFS, fitting for the transverse relaxation rate (R2)
gave excellent agreement with the weak field approximation
expression for R2 for Carr-Purcell-Meiboom-Gill sequences,
but diverged for free induction decay. These same results
were confirmed in the ex vivo analysis.
Conclusion: Transverse signal decay in the motional narrow-
ing regime can be accurately described analytically. This the-
ory has applications in areas such as tissue iron imaging,
relaxometry of blood, and contrast agent imaging. Magn
Reson Med 80:341–350, 2018. VC 2017 International Society
for Magnetic Resonance in Medicine.
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INTRODUCTION

Understanding the detailed nature of transverse signal
decay in the presence of magnetic perturbations plays an
important role in many fields of MRI: from deriving
baseline physiological parameters related to the blood
oxygenation level–dependent signal (1) to quantifying
structural properties of bone (2). In the presence of mag-
netic perturbers, it is well known that the observed T2 or

T!2 relaxation times depend on several factors, such as
the perturbation magnitude (i.e., field strength and mag-
netic susceptibility offset between the perturbers and the
surrounding medium), the interplay between molecular
diffusion and the spatial scale of the perturbers, and the
refocusing rate in a multi-echo spin-echo (SE) sequence
(3,4). Depending on the combination of these parameters,
the system is said to be in one of three dephasing
regimes: static dephasing, motional narrowing, or an
intermediate dephasing regime, with each regime dis-
playing unique signal characteristics.

For red blood cells (RBCs) in blood, the shape and size
of the cells and the diffusion coefficient of blood water
have relatively low variability, such that the system
exists in the motional narrowing regime. In this regime,
the characteristic time for a water molecule to diffuse
the length of a perturber is much less than the time for a
spin at the surface of a perturber to dephase (5). Using
an algebraic approximation for the temporal correlation
function, referred to as the weak field approximation
(WFA), Jensen and Chandra (6) derived an expression for
how the transverse signal decay rate would change (DR2)
in a random distribution of perturbers as a function of
the refocusing interval in a Carr-Purcell-Meiboom-Gill
(CPMG) acquisition. Following an alternative approach
known as the Gaussian phase approximation, Sukstan-
skii and Yablonskiy (5) derived a closed-form solution
for how the transverse signal would evolve during free
induction decay (FID) and as a function of SE time in a
single SE-type measurement. This derivation resulted in
the same DR2 as in the FID limit for spheres from the
weak field approximation.

The WFA has successfully been applied to model
CPMG relaxometry results from ex vivo blood samples
(6–9) and in vivo tissue non-heme iron depositions
(6,10) using its predictions of DR2 to make inferences on
the underlying physiology. However, with the increasing
use of SE-based pulse sequences that sample away from
the spin echo itself, such as asymmetric spin echo (11),
gradient echo sampling of the spin echo (12), and gradi-
ent echo sampling of FID and echo (13), it is important
to be able to compare the measurements with the entire
predicted time course, rather than solely the signal
observed at the spin echoes. Here we present a closed-
form solution (CFS) describing the complete transverse
signal time course for an arbitrary number of refocusing
pulses using the weak field approximation. The validity
of the CFS was examined using simulations from distri-
butions of spheres over a range of perturber radii and
pulse sequences, in which the predictions of the CFS
could be compared with the known ground truth of the
simulations. Finally, fitting using the CFS was
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experimentally compared with two monoexponential
models for DR2, including chemical exchange, using
CPMG SE data from ex vivo human blood samples at 3 T.

THEORY

Following the derivation of the WFA from Jensen and
Chandra (6), for a system of hydrogen nuclei subjected to
a spatially varying magnetic field, the total field along
the longitudinal direction at a point r is given by the
sum of the main magnetic field, B0, and an inhomoge-
neous component, DB(r). The spatial variation of this
field can be described by an average over the inhomoge-
neous component for all pairs of points, r and r0, referred
to as the spatial correlation function

Cðr # r0Þ ¼ DBðrÞDBðr0Þfld [1]

Because of the molecular diffusion through the field over
time, C will effectively vary over a time interval Dt
and is described by the temporal correlation function,
K(Dt), as

KðjDtjÞ ¼ DB½rðtÞ' DB½rðt þ DtÞ'fldþdiff

¼ C½rðtÞ' # C½rðt þ DtÞ'diff ; [2]

where the average is over space and all possible diffu-
sion trajectories.

For a system of spins in the motional narrowing
regime, diffusion across the field inhomogeneities
reduces the transverse signal magnitude, S0(t), at time t
during a CPMG experiment as (5,6)

S0ðtÞ ¼ exp # g2
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where s(t) is a spin flip function of magnitude 1 and
changes sign upon application of any 180 ) refocusing
pulses.

Although analytic expressions for K(t) for systems of
spheres and infinite cylinders exist (5,6), deriving an
exact expression for K(t) is generally only tractable for
simple geometries. A relatively simple form can be
derived by considering the angular average of C(r) and
assuming it decays monotonically toward 0 as r ! 1. By
assuming that this radial correlation function, G(r),
decays as a quadratic exponential, i.e.,

GðrÞ ¼ 1

4p

Zp

0
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Z2p

0

dfsinuCðr; u;fÞ ¼ G0e#ðr=rcÞ2 ; [4]

where G0¼C(0) is the mean square field inhomogeneity
and rc is a characteristic length that depends on the
exact description of the perturbers, then, for unrestricted
and isotropic diffusion in three dimensions, K(t) will
take the algebraic form (6)

KðtÞ ¼ G0 1þ 4Dt

r2
c

! "#3
2

; [5]

where D is the diffusion coefficient of water. This deriva-
tion assumes that the object is finite in three dimensions,
or more practically, that the field changes quickly rela-
tive to diffusion along any direction. Therefore, it cannot
describe the correlation function for long cylinders,
which are frequently used to model blood vessels, or
broad disks. Using Equation [5] and assuming that S0(t)
decays monoexponentially as t ! 1, an asymptotic solu-
tion for DR2 is (6)

DR2 ¼ G0
g2r2

c
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c

! "
; [6]

where F is defined by Equation [30] in (6) and t180 is the
CPMG refocusing interval.

Using the correlation function in Equation [5], it is
also possible to explicitly solve the integral in Equation
[3] to produce a CFS for the signal magnitude at any
time, t. If no refocusing pulses are applied, then the
solution of this integral gives the FID signal

S0ðtÞ ¼ exp #g
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where tD + r2
c =D is a characteristic diffusion time. In the

case of a SE or CPMG sequence, this equation holds for
t< 1/2 t180. This and the following expression were
recently independently derived (14). After one refocus-
ing pulse, we get
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where t> 1/2 t180 if only one refocusing pulse is applied
or 1=2 t180< t< 3/2 t180 if another pulse is applied at
t¼ 3/2 t180. Continuing in this manner, the CFS after N
refocusing pulses can be deduced (15) as
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This expression holds even if no more pulses are applied
after the Nth refocusing pulse, and the system proceeds
to evolve freely as an FID.

METHODS

The evaluation of the CFS in Equation [9] was imple-
mented in MATLAB R2015a (MathWorks, Natick, MA,

342 Berman and Pike



USA) using a function handle that was updated at each
refocusing pulse and that iteratively added the terms in
the summation to itself up to the Nth pulse.

Simulations

As written, Equation [9] represents a solution for trans-
verse signal decay that could apply to a variety of sys-
tems, given appropriate values for rc and G0 and that the
conditions of the WFA are satisfied. To assess the valid-
ity of the CFS with concrete values, spherical perturbers
were considered, for which rc and G0 are known. For
spheres of radius R and with a susceptibility offset (Dx)
relative to the external medium, rc and G0 are (5,6,16)

rc ¼
4

3
ffiffiffiffi
p
p

! "1
3

R; [10]

and

G0 ¼
4

45
zð1# zÞðDxB0Þ2; [11]

where z is the volume fraction occupied by the spheres,
and Dx is in SI units. The original derivation of the WFA
assumed that the positions of the perturbers were uncor-
related, which allowed for the possibility of overlapping
perturbers, but the (1 - z) correction factor in G0 was
added to account for this with nonoverlapping perturb-
ers (16). The true geometry of perturbers like RBCs or
iron depositions would result in different values for rc

that may not be readily calculated analytically. This is
examined in more detail in the Supporting Information,
where the temporal correlation function from the WFA
is compared with the exact correlation function of the
Gaussian phase approximation for multiple spheroid
geometries (see Supporting Fig. S1).

The accuracy of the CFS was compared with simula-
tions of the transverse MR signal from distributions of
randomly positioned spheres using MATLAB. The simu-
lations were performed using the deterministic diffusion
method in three dimensions (17). This is a computation-
ally efficient simulation technique, and it inherently
models the perturber boundaries as freely permeable, as
required by the WFA. This method spatially discretizes
the volume over which the simulation is run onto a lat-
tice and, for a given distribution of perturbers, calculates
the field offsets generated by them over this lattice. Fol-
lowing a 90 ) excitation pulse, each element of the lattice
has a uniform transverse magnetization with an initial
phase of 0 and magnitude of 1. In time steps, dt, the
transverse magnetization at the (k,l,m)th lattice element,
Mklm, precesses by an angle D/klm¼ g DBklm dt, where
DBklm is the field offset at that lattice element. Diffusion
is modeled by an isotropic, Gaussian blurring of the mag-
netization along each dimension independently. This
was implemented by linear convolution of the magneti-
zation with the 1-dimensional discrete diffusion kernel
with a width parameter equal to the expected mean-
square displacement of water molecules, r2¼ 2Ddt (18).
Together, the magnetization at the Nth time point can be
summarized by

Mn ¼
Mn#1 , e#DU - D n > 0

1 n ¼ 0
;

(
[12]

where DU is the precession matrix, D is the diffusion matrix,
1 is a matrix consisting of all ones, , denotes element-wise
multiplication, and - denotes convolution. Refocusing
pulses were modeled by taking the complex conjugate of the
magnetization at each lattice element. Finally, the signal
magnitude at the Nth time point is given by

Sn ¼
1

N3

X

k;l;m

Mklm;n

(((((

(((((; [13]

where N is the number of lattice elements summed along
each dimension, and the sum was only performed over
the central one-third of the lattice width along each
dimension, to avoid convolution edge effects.

The field offsets generated by each sphere were given
by

DBðrÞ ¼
1

3
DxB0

R
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;
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><

>:
[14]

where h is the angle between B0 and the line joining the
center of a sphere and a point a distance r from the sphere
center. The field offsets for each sphere were independently
calculated and summed across the lattice to give DBklm.

To evaluate the validity of the CFS across dephasing
regimes, the simulations were run on populations of
spheres whose radii were increased from 0.9 up to 24 mm
with z held constant at 3%, for which sphere overlap was
negligible. Dx of the spheres was set to 1.2 ppm, which is
equivalent to the susceptibility offset between 60% oxy-
genated RBCs and plasma (19,20), and would also approx-
imately give the same G0 from iron depositions in deep
gray matter (6). Other settings included B0¼3 T, dt¼ 0.25
ms, total simulation time¼80 ms, D¼ 1.0 mm2/ms, and
intrinsic T2 relaxation was ignored. Under these settings, the
parameter typically used to classify the dephasing regime,
a ¼ tDdv ¼ r2

c =DgDxB0=3, varies from 0.22 to 153, where
a/1 defines the motional narrowing regime; a01 defines
the static dephasing regime; and a11 represents the inter-
mediate regime. For simulations in which the sphere radius
was less than 5 mm, the time step needed to be decreased to
0.05 ms to properly sample the diffusion effects in the field
offsets around the perturbers; for larger radii, time steps less
than 0.25 ms negligibly affected the simulations.

Simulated pulse sequences included FID, SE (echo
time¼ 80 ms), and CPMG using t180¼40 or 10 ms,
resulting in two or eight echoes, respectively. These sim-
ulations were performed on 10 randomly seeded distri-
butions of 0.9-mm-radius spheres on a 6003 lattice with a
side length of 90 mm isotropic. These distributions were
reused for the larger radii by assigning them an effective
lattice size of 90 * R/0.9 mm.

Analysis

Before comparing the simulations with the CFS in Equa-
tion [9], the simulations were averaged across all random
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distributions for each set of run parameters (e.g., radius,
t180). Each set of signals was compared by examining the
root mean square error between the time series and DR2.
DR2 was calculated at the final time point, echo time
(TE)¼80 ms, using DR2¼–ln(S)/TE.

Ex Vivo Validation

The CFS was fit to previously published ex vivo human
blood CPMG data collected at 3 T (7). Across 40 blood
samples from 10 subjects, the blood oxygen saturation
(SO2) varied between 20 and 98%, and hematocrit varied
between 39 and 48%. Samples were scanned at room
temperature using a T2-prepared segmented echo-planar
imaging sequence with t180 values of 2, 2.5, 3, 3.5, 4, 5,
6, 8, 10, 12.5, 17.5, 27.5, and 37.5 ms. For each refocus-
ing interval, six different T2 preparation durations were
used, resulting in six different effective TEs. Because of
the presence of image artifacts in some data sets, one
subject’s samples were excluded and an additional five
samples from four other subjects were excluded, result-
ing in 31 samples being analyzed.

An analysis of these data, which evaluated the rela-
tionships among G0, blood oxygenation, and additional
blood parameters, has already been performed (7); the
objective, here, was to evaluate the ability of the CFS to
fit the relaxometry data in comparison with more con-
ventional models of transverse relaxation. Therefore,
three different models were fit to the data for each sub-
ject using an expression of the form

SijðTEÞ ¼ S0ijexpð#R2;0i TEÞS0ðTE; t180j;G0i ; tDÞ; [15]

where i is the blood sample index; j is the t180 index;
Sij(TE) is the mean measured signal intensity at TE for the
jth refocusing interval of the ith sample; S0ij is the initial
signal intensity for the jth refocusing interval of the ith
sample; R2;0i is the intrinsic R2 of the ith sample; G0i is the
mean square field inhomogeneity of the ith sample; tD

¼ r2
c =D was constrained to be constant across all samples

for a given subject; and S0 was dependent on the model. In
the first model, referred to as “WFA-CFS,” S0 was the CFS
in Equation [9]. In the second and third models, S0 was
given by expð#DR2ijTEÞ. In the second model, referred to
as “WFA-R2,” DR2ij¼ DR2ðt180j;G0i ; tDÞ, as defined in

Equation [6], the monoexponential expression from Jensen
and Chandra (6). In the third model, referred to as “LM-
R2,” the Luz-Meiboom exchange model of relaxation was
used with (21)

DR2ij¼ K0itex 1# 2tex

t180j

tanh
tex

2t180j

 ! !

; [16]

in which G0i was replaced by K0i, the characteristic
square field inhomogeneity of the ith sample; and sD was
replaced by sex, the water exchange time, which was
constrained to be constant across all samples for a given
subject. All three models were fit in the signal space, as
this allowed for their quality of fit (sum of square resid-
uals) to be quantitatively compared. For each subject,
therefore, each model resulted in 52 estimates of S0ij

(one per vial and t180), four estimates of R2;0i and G0i or
K0i (one per vial), and one estimate of sD or sex (one per
subject).

For all models, echo times from a given sample were
excluded if the mean image intensities were less than
two standard deviations above the mean background
intensity, and all echoes from a given t180 were excluded
if less than three echoes passed this criterion. All fits
used the MATLAB function lsqcurvefit with the trust-
region-reflective algorithm, with T2;0i (1/R2;0i ) bounded
between 10-6 and 300 ms, G0i20, sD20, K0i20, and
sex20. Samples in which the fitted T2,0 were within 1%
of the upper bound were deemed failed fits and were
excluded from further analyses. These failed fits tended
to correlate with cases of excessive ghosting, resulting
from residual motion of the blood in the syringes.

RESULTS

Validation of the Closed-Form Solution

Figure 1 compares the simulated FID and t180¼40 ms
time series against the CFS for several radii. The agree-
ment between simulation and CFS was close for the 0.9-
mm radius, whereas for the 24-mm radius, the CFS signif-
icantly overestimated the decay. At the 3.2-mm radius,
the agreement was also close, but the decay was slightly
overestimated by the CFS. These three radii demonstrate
the transition from the motional narrowing regime to the

FIG. 1. Comparison of the mean simulated free induction decay (FID) (a) and Carr-Purcell-Meiboom-Gill (CPMG) (b) signals versus the
CFS for select sphere radii. The shaded bands represent the mean 6 standard deviation of the simulated signals, and the dashed lines
represent the closed-form solution (CFS) for each radius.
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static dephasing regime. Figure 2, which compares DR2

with the root mean square error between the simulations
and the CFS, shows this transition more continuously.
As t180 decreased, the accuracy of the CFS increased
until the differences were negligible for all radii at
t180¼ 10 ms. To consider the signal from tissue with a
given perturber radius, R, but another diffusion coeffi-
cient, D, the results from an effective perturber radius
R0¼R* (1 mm2/ms/D)1/2 can be used (22).

Closed-Form Solution Versus Monoexponential Decay

Examples of the CFS for multiple refocusing intervals
are shown in Figure 3 and are plotted along with the

monoexponential decay described by Equation [6]. These
curves were generated using spheres to approximate
RBCs with z¼ 40%, radius¼ 3 mm, SO2¼ 60%, B0¼ 3 T,
and assuming D¼ 2.0 mm2/ms at 37 )C (6,23). Figure 3b
shows an enlargement of the CFS and the monoexponen-
tial curve for the case t180¼ 10 ms; the points of maximal
refocusing are shifted significantly earlier in time than
the SE times, and the monoexponential curve does not
pass through them. Despite this offset, when at least
three SEs from the CFS were fit to a monoexponential
decay, the fitted DR2 values were within 2% of those
predicted by Equation [6] for the ranges t180¼1–75 ms
and D¼0.5–4 mm2/ms, as shown in Figure 3c. For the
FID, it is evident from Figure 3a that the CFS initially

FIG. 2. Accuracy of the CFS versus simu-
lations across a range of sphere radii and
for FID, spin echo, and two CPMG pulse
sequences. Left: Comparison of DRð!Þ2

from the simulations (circle markers) with
the predicted values from the CFS (black
line). The error bars represent the standard
deviation of the mean simulated values.
Right: Root mean square error across time
between the mean simulations and the
CFS. Note that the DR2 scales change
between the pulse sequences’ figures,
whereas they are constant for the root
mean square errors. SE, spin echo;
RMSE, root mean square error
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diverges from monoexponential decay and gradually
reaches it. Thus, values of DR!2 from the monoexponen-
tial expression significantly overestimate the DR!2 esti-
mated using 10 echoes from the CFS, particularly at
short echo spacings (Fig. 3d). A similar comparison of
the signal evolution from multiple spheroid geometries
is also given in the Supporting Information (see Support-
ing Fig. S2 and Supporting Table S1).

Ex Vivo Validation

Of the 31 samples that were analyzed, two of them had
T2,0 estimates that reached the upper bound in both the
WFA fits, and one of these samples reached the upper
bound in the LM-R2 fit; both appeared to result from
image quality issues and were excluded from the remain-
ing analyses. Example fits of the three models to the
same blood sample are shown in Figure 4. The fitted sD

FIG. 3. Comparison of the CFS in Equation [9] versus the monoexponential approximation in Equation [6] from Jensen and Chandra (6),
calculated for spheres simulating red blood cells in blood using z¼40%, R¼3 mm, D¼2 mm2/ms, and SO2¼60%, unless specified oth-
erwise. a: Example time series for two t180 values and for an FID. b: The t180¼10 ms time series is expanded to highlight some of the
characteristics of the CFS, such as the shift in the maximal refocusing points and the differences between it and the monoexponential
approximation. (b) shares the same legend as (a), and the green markers represent the CFS signal at the spin-echo times. c, d: Percent
differences between DR!2 estimated from the monoexponential curve and the CFS shown for several diffusion coefficient values and as
a function of echo spacing. c: Comparison of the CPMG signals where DR2 from the CFS was estimated using three echoes. d: Com-
parison of the FID signals, in which DR!2 from the CFS was estimated using 10 echoes. (c) and (d) share the same legend. z, volume
fraction; R, radius; D, diffusion coefficient; SO2, oxygen saturation.

FIG. 4. Example fits from a single blood sample using the weak field approximation (WFA) CFS model (a), the WFA monoexponential
model (WFA-R2) (b), and the Luz-Meiboom monoexponential model (LM-R2) (c). Mean signal intensities 6 their standard deviations are
displayed with the circle markers, and the model fits are plotted with the curves. Each color represents a different t180 refocusing inter-
val, labeled on the right. Data points are from a T2-prepared sequence in which the preparation durations were varied by integer multi-
ples of the t180; therefore, not every spin echo is sampled.
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values were converted to rc using tD ¼ r2
c =D, assuming

D¼1.4 mm2/ms in blood at 20 )C (7). Correlations among
the individual fitted parameters were calculated using
the Pearson correlation coefficient and are displayed in
Figure 5. The mean fit parameters are summarized in
Table 1. Statistical comparisons were made between the
two WFA model fits (WFA-CFS and WFA-R2) and
between the two R2-based model fits (WFA-R2 and LM-
R2), where appropriate, using two-sided paired t-tests.
The two WFA model fits were nearly identical, consis-
tent with the theoretical CPMG results in Figure 3. The
total sum of square residuals was lower for the WFA
models than for the LM-R2 model; however, this was not
statistically significant.

DISCUSSION

In this study, we used the weak field approximation
model to describe the entire transverse signal time
course. To determine the dephasing regime in which the
CFS was valid, we compared it with simulations in

which the sphere radii were increased from 0.9 up to
24 mm. In most of the pulse sequences, the CFS started
to significantly overestimate the decay for R>3.2 mm,
but was accurate at least up to this radius (see Fig. 2).
The motional narrowing regime is most commonly clas-
sified using the dimensionless inequality a¼ sDdx/1
(4). With our simulation parameters, a radius of 3.2 mm
results in a¼ 2.7, meaning that the WFA is valid in the
motional narrowing regime, as expected, and it can be
applied across the motional narrowing-intermediate
dephasing regime boundary but not well beyond it. Both
the simulations and the WFA modeled unrestricted dif-
fusion; the deviations that arose between the two demon-
strate the limitation of the WFA to predict transverse
signal as the system transitions from the motional nar-
rowing regime into the static dephasing regime. The
deviations were likely greatest for the FID sequence
since, because of the lack of refocusing pulses, the relax-
ation rates were larger than in the SE and CPMG sequen-
ces, allowing the simulated and predicted signals to
diverge more.

FIG. 5. Agreement between the fitted parameters from the WFA-CFS and WFA-R2 models (top row) and the LM-R2 and WFA-R2 models
(bottom row). T2,0, G0, and rc are compared between the WFA models; however, only T2,0 is compared between the monoexponential
models, as the other parameters are not equivalent for comparison. Figure legends show the line of best-fit coefficients and the Pearson
correlation coefficient, r.

Table 1
Fitted Model Parameters From the WFA Using Either the WFA-CFS or the WFA-R2, or the LM-R2

Parameter/Model 1. WFA-CFS 2. WFA-R2 3. LM-R2

t-test

P(16¼2)a P(2 6¼3)b

Total SSR 186,563 186,522 187,897 0.1 0.7
T2,0 (ms) 189 6 25 190 6 25 163 6 26 0.08 <0.001
rc (mm) 2.6 6 1.2 2.6 6 1.2 – 0.3
G0 (10-13 T2) 1.5 6 1.2 1.5 6 1.2 – 0.1
K0 (10-13 T2) – – 0.93 6 0.98
sex (ms) – – 2.2 6 0.8

Note: Mean 6 standard deviation model parameters are displayed. SSR, sum of square residuals.
aPaired t-tests are between the WFA Models 1 and 2.
bPaired t-tests are between the R2 Models 2 and 3.
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We found that the closed-form solution and the origi-
nal WFA expression for monoexponential decay pro-
vided very similar estimates for DR2 in CPMG sequences
(Fig. 3). However, the discrepancy for the FID decay
could be significant (up to as much as 100% error in the
estimates of DR!2). In light of the agreement between the
simulations and the CFS in the motional narrowing
regime, as detailed in Figure 2, we attribute this discrep-
ancy to the DR!2 model not accurately accounting for the
amount of time required for the FID to approach mono-
exponential decay. Considering that most multi-echo gra-
dient-echo sequences use echo spacings less than 20 ms,
the discrepancy could be substantial if one were to use
measured DR!2 values to obtain quantitative estimates of
the underlying tissue properties.

These CPMG findings were echoed in the ex vivo
relaxometry analysis, in which the WFA monoexponen-
tial and CFS fits gave nearly identical model parameters
across a wide range of blood oxygenations. That the
WFA models provided a slightly better fit than the LM
model may indicate that the WFA model of diffusion
more realistically describes the underlying relaxation
mechanisms or that it can more flexibly adapt to the
data. The WFA fits were more sensitive than the LM
model fits to image quality issues. This may be an
advantage for the LM model, but having sensitivity to
image quality issues may also have its merits. In the pre-
ceding simulations, the CFS accurately predicted signal
evolution in the motional narrowing regime, suggesting
that the WFA should reliably fit the relaxometry data.
Diffusion through field gradients has been shown to be
the dominant source of transverse relaxation in suspen-
sions of RBCs at 7 T (24); however, the WFA may
become more biased at these higher field strengths. As
the field strength is decreased, the relative contribution
of chemical exchange to relaxation is expected to
increase, as its contribution changes at a less than qua-
dratic rate with respect to B0, whereas the diffusion con-
tribution is expected to change at a quadratic rate (25).
That the results of the Luz-Meiboom exchange model fits
gave an exchange time of 2.2 ms, whereas the exchange
lifetime of water in RBCs is generally considered to be
approximately 10 ms (26–29), is evidence that the LM
chemical exchange model alone is insufficient to
describe transverse relaxation at 3 T. This finding of
lower than expected sex is consistent with several earlier
studies with B0 of approximately 1.5 to 4.7 T
(7–9,30–32). Invariably, both relaxation mechanisms con-
tribute to T2 decay, and to what extent is a complex
issue that further underscores the limitations of describ-
ing the relaxation by a single mechanism.

The WFA assumes unrestricted diffusion (i.e., that the
diffusion inside, outside, and across the perturbers is
equal and represented by a single diffusion coefficient).
However, intracellular diffusion will generally be less
than extracellular diffusion as a result of diffusion
restriction from cell membranes. Using a single apparent
diffusion coefficient for all compartments should be an
accurate representation at low perturber concentrations;
however, as the perturber concentration increases, the
apparent diffusion coefficient will decrease as diffusion
will be hindered by the finite permeability of the

perturbers. For RBCs, where water is exchanging rela-
tively quickly across the RBC boundaries, the apparent
diffusion coefficient may be approximated by the
weighted sum of intra- and extracellular diffusion coeffi-
cients (33), and they both can be corrected for their
increased tortuosities (29,33,34). For blood, the apparent
diffusion coefficient may be in the range of 1.5 to
2.1 mm2/ms (29,35). Using a ¼ r2

c =DgDxB0=3 and starting
with the conditions D¼ 1.5 mm2/ms, rc¼2.6 mm (from
the ex vivo fits), Dx¼ 1.2 ppm (or SO2¼ 60%), and
B0¼ 3 T, gives a¼ 1.4. One can then determine the condi-
tions under which the theory will still be accurate (a !
2.7). Either doubling the susceptibility offset or the field
strength, increasing rc by a factor of !2, or halving the
diffusion coefficient will result in a doubling of a, thus
putting it slightly over the threshold. The susceptibility
offset may be altered either endogenously by decreasing
SO2 or exogenously by the administration of a contrast
agent. These numbers serve as an estimate for the range
of applicability and are sensitive to the assumed cell size
and diffusion coefficient.

The simulated conditions, although framed primarily
in the context of modeling blood, can also apply to sig-
nal from iron depositions in tissue. The combination of
volume fraction, Dx, and B0 strength simulated gave
G0¼ 4.3 * 10-14 T2, which is comparable to that in deep
gray matter at 2.35 T (6), where G0 and rc were found to
be approximately (1–6)* 10-14 T2 and 2.3 to 3.1 mm,
respectively. The diffusion coefficient, however, would
be approximately 1.0 mm2/ms, such that for iron deposi-
tions modeled by perturbers with rc¼ 2.6 mm and the
same G0, a would equal 2.2. Given that the CFS was
accurate up to a 3 2.7, this would imply that the WFA
would likely lose accuracy for more severe iron deposi-
tion, field strengths greater than 3 T, larger cell sizes, or
reduced diffusion. However, this may not preclude a
more qualitative interpretation of the WFA parameters
for iron imaging, whereby the rc and G0 estimates may be
biased but still proportional to their true values.

A limitation of this study is that the in silico valida-
tion of the CFS was only performed using spherical per-
turbers. This was done since analytical solutions for G0

and rc had previously been derived, allowing the simula-
tions to be predicted a priori. For other geometries, the
parameters G0 and rc would take on other values, but
they would scale with volume fraction and field offset
strength similarly (5). In the Supporting Information,
additional spheroid geometries were analyzed and the
transverse signal predicted by the WFA was found to be
in good agreement with the signal predicted by the
geometry-specific Gaussian phase approximation. How-
ever, it may still be convenient to interpret in vivo or ex
vivo relaxometry results as if the perturbers were spheri-
cal, as the exact shape of the cells may not be known a
priori. Using the Gaussian phase approximation in the
long time limit, Sukstanskii and Yablonskiy (5) calcu-
lated DR2 for spheroids that were uniformly oriented rel-
ative to B0. Even for the case of an oblate spheroid, in
which one semi-axis is twice the length of the other, a
geometry that has previously been used to represent
RBCs (35), DR2 would still be within 4% of that of
spheres (when the sphere and spheroid volumes and
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volume fractions are matched). This reflects how the
extracellular field inhomogeneities from spheroids and
RBCs can be approximated as those from a sphere (30).
In the short time limit, relaxation is most sensitive to
water molecules dephasing from exchanging across the
perturber boundary, which depends on the perturber’s
surface area–to-volume ratio (5). This ratio for the oblate
spheroid is approximately two-thirds that of a sphere’s,
so a sphere does not reliably reproduce the initial time
course. Therefore, particularly in the long time limit, fits
to the CFS for oblate spheroids could cautiously be inter-
preted as if they were spheres; however, this assumption
of spherical perturbers can be avoided by using the cor-
rect expression for rc, where possible. As demonstrated
in the Supporting Information, the fitted rc parameter
may be valid for a range of spheroid geometries (spheri-
cal, oblate, and prolate), with the caveat that it may
slightly underestimate the true rc value.

The comparison of the WFA with the simulations, the
Gaussian phase approximation, and the chemical
exchange model informs us about the inherent differ-
ences between these models or the assumptions underly-
ing the simulations. This is relevant in that none of
these models explicitly account for other complex effects
such as flow or the potential preferential alignment of
RBCs or spheroids with the B0 field (30). Although this
orientation effect appears to only weakly affect the trans-
verse relaxation (35) and is potentially diminished by
flow itself (24), it may be useful to attempt to incorporate
it into future modeling studies.

We envision the CFS could be used to simplify the
simulation of transverse signal decay from systems in
the motional narrowing regime, such as blood, where the
sheer number of perturbers makes simulation a computa-
tional burden. This could be achieved by directly
substituting the simulation time course with the CFS
analytical time course, provided appropriate values for
G0 and rc. When analytical solutions for G0 and rc are
not apparent, these parameters could be empirically
determined by fitting the radial correlation function of
the system of perturbers using Equation [4]. Another
application of the CFS could be to decrease the total
scan time required for fitting transverse signal decay to
the WFA by substituting the large number of refocusing
rates used during a CPMG experiment with fewer refo-
cusing rates and sampling the signal at time points away
from the SE times. The non-SE samples would provide
additional information related to the characteristic per-
turber size that could then be fit using the CFS. It may
even be feasible to reduce the number of acquisitions to
one with many gradient-echo readouts.

CONCLUSIONS

We have derived and validated a closed-form solution
for transverse signal decay under a range of pulse
sequences using the weak field approximation. Simula-
tions were used to validate the CFS at time points away
from SE times in FID, SE, and CPMG sequences. The
CFS was found to be very accurate in the motional nar-
rowing regime, as expected, and partially into the inter-
mediate dephasing regime. A consequence of this is that

the use of the WFA for brain tissue iron imaging may
become increasingly biased at field strengths greater than
3 T. A more qualitative interpretation of those studies or
use of an alternate theory developed for the intermediate
or static dephasing regimes may be more appropriate.

When using CPMG signals at the SEs from the CFS to
fit for DR2, it was in excellent agreement with a well-
known expression for asymptotic DR2 derived in the
original WFA study (6), showing self-consistency of the
CFS within the WFA. This result was shown theoreti-
cally and experimentally with ex vivo blood CPMG data.
This comparison also showed that the time for an FID to
approach monoexponential decay can be substantial;
therefore, gradient echo data should be fit using the CFS
rather than the monoexponential form of the WFA.

Overall, this study has advanced the biophysical signal
modeling from tissues in nonstandard CPMG sequences.
This could help simplify simulations from tissues such
as blood, or reduce the amount of time required for
quantitative in vivo or ex vivo MR acquisitions from sys-
tems in the motional narrowing regime.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.

Fig. S1. (a, c) Comparison of the exact temporal correlation function for
spheroids from the Gaussian phase approximation (GPA, black line) and
the algebraic temporal correlation function from the WFA (dashed red line).
The correlation functions have been normalized by the mean square field
inhomogeneity, G0, and time has been normalized by the characteristic dif-
fusion time, tc5r2

c=D. The percent differences between the two are shown
in (d) to (f), using the exact correlation function as the reference.
Fig. S2. Comparison between the Gaussian phase approximation (GPA,
circles), the WFA CFS (dashed lines), and the rc-optimized WFA CFS (solid
lines) for the FID (red) and spin-echo time courses (black). The nonopti-
mized WFA line colors are less saturated to improve visual contrast.
Table S1. Agreement of the WFA-CSF With the Exact FID and Spin-Echo
Signal Decay of the Gaussian Phase Approximation
Note: In the third column, rc was scaled to minimize the RMSE, with the
scaling factor given in the last column.
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In this study, the closed-form solution (CFS) for the weak field approximation (WFA) was 

validated against simulations from populations of spherical perturbers. To investigate how well 

the WFA may apply to other geometries, here we consider the temporal correlation functions and 

transverse signal evolutions of ellipsoids of revolution, for which Sukstanskii and Yablonskiy have 

derived exact analytical expressions under the Gaussian phase approximation (GPA) (1). Oblate 

spheroids have previously been used to model red blood cells, hence, these geometries also have 

biological relevance (2). 

 
Temporal Correlation Functions 

 

Under the WFA of Jensen and Chandra (3), a generic temporal correlation function, given by the 

algebraic expression reproduced in Eq. [5] of the main text, was proposed. That expression is  

where G0 is the mean square field inhomogeneity (in units of T2), D is the diffusion coefficient, 

and rc is the characteristic length – dependent on perturber geometry. Jensen and Chandra also 

derived an exact temporal correlation function for spheres and found that it and the algebraic 

function were in excellent agreement (3). 

In the GPA, the exact temporal correlation functions for several geometries were derived, 

including those for spheres and spheroids. Spheroids are defined as rotated ellipses with semi-axes 

a and b, with the b-axis being the axis of rotation. This describes a sphere when a = b, a flattened 

sphere when a > b (known as an oblate spheroid), and a rugby ball shape when a < b (known as a 

prolate spheroid). The temporal correlation function for spheroids that are uniformly distributed 

throughout the system volume and uniformly oriented is (1) 
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where ta = a2/D, tb = b2/D. Note, the notation has been modified slightly to be consistent with that 

used in this paper, i.e., G0 is in units of T2 rather than s-2, and G0 is given by Eq. [11] in both cases. 

The long-time limit of K(t) for ellipsoids, when t �ta and t �tb, was shown to be 

By making the substitution b = la and equating the long-time behaviour of KWFA and KGPA, it can 

be shown that the characteristic length is related to a and l by 

This simplifies to Eq. [10] when l = 1 (i.e., b = a). 

 Comparisons of the WFA and exact temporal correlation function of the GPA in Eqs. [S1] 

and [S2], respectively, for spheres, oblate spheroids (l = 0.5), and prolate spheroids (l = 2) are 

shown in Sup. Fig. S1. The case where l = 0.5 has previously been used to model red blood cells 

with a = 4 µm and b = 2 µm (2). Eq. [S2] was computed by numerical integration in MATLAB. 

At short times, large percent differences between the correlation functions develop for all three 

examples, with l = 1 showing the smallest difference in magnitude and extent in time. The time 

to return to below 5% difference is approximately 0.25tc for l = 1, tc for l = 0.5, and 1.33tc for l 

= 2. 
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Supporting Figure S1: (a)–(c) Comparison of the exact temporal correlation function for 
spheroids from the Gaussian phase approximation (GPA, black line) and the algebraic temporal 
correlation function from the weak field approximation (WFA, dashed red line). The correlation 
functions have been normalized by the mean square field inhomogeneity, G0, and time has been 
normalized by the characteristic diffusion time, tc = rc2/D. The percent differences between the two 
are shown in (d)–(f), using the exact correlation function as the reference. 

 
Transverse Signal Evolution 

 

Using the correlation function in Eq. [S2], Sukstanskii and Yablonskiy derived analytic 

expressions to describe the transverse signal evolution from spheroids (1). Both the FID and SE 

signal intensities are described by the equation 

where g(x,t) is defined separately for FID and SE sequences as 
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 Examples of this exact expression from the GPA are compared against the WFA CFS in 

Sup. Fig. S2. Eq. [S5] was computed by numerical integration. In all three cases, the semi-axes 

were chosen to give the same rc value: b = a = 3 µm for spheres, b = 1/2 a = 1.89 µm for prolate 

spheroids, and b = 2a = 4.76 µm for oblate spheroids, all resulting in rc = 2.73 µm using Eq. 

[S4]. All other simulation settings matched those from Figure 3, i.e., ζ = 40%, D = 2 µm2/ms, 

SO2 = 60%, and B0 = 3 T. The combined FID and SE root mean square error (RMSE) between 

the CFS and the GPA are listed in Sup. Table S1. The WFA rc parameter was then scaled to 

minimize the RMSE between the CFS and the GPA signals using non-linear least squares 

minimization. This is plotted in Figure S2 and listed in Table S1. 

 

 
Supporting Figure S2: Comparison between the Gaussian phase approximation (GPA, circles), 
the WFA closed-form solution (dashed lines), and the rc-optimized WFA CFS (solid lines) for 
the FID (red) and SE time courses (black). The non-optimized WFA line colours are less 
saturated to improve visual contrast. 

 

Supporting Table S1: Agreement of the WFA closed-form solution with the exact FID and SE 
signal decay of the Gaussian phase approximation. In column three, rc was scaled to minimize the 
root mean square error (RMSE) – with the scaling factor given in the last column. 

Geometry RMSE – initial RMSE – optimized rc scaling 

Spheres 0.0142 0.00360 0.969 

Oblate spheroids 0.0297 0.00612 0.938 

Prolate spheroids 0.0300 0.00590 0.937 
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 The differences between the WFA and the GPA signals are minimal for spheres but more 

apparent for the two other spheroid shapes. This is consistent with the rc scaling used to 

minimize the RMSE, which was only 0.97 for spheres but 0.94 for both spheroids. This scaling 

would suggest that rc estimates from in vivo or ex vivo tissue may slightly underestimate the true 

rc value if the perturbers can be described by a spheroid geometry; however, the overall 

agreement between the CFS and the exact Gaussian phase approximation solution is very good 

for multiple spheroid geometries. 

  



 S6 

References 
 

1. Sukstanskii AL, Yablonskiy DA. Gaussian approximation in the theory of MR signal 
formation in the presence of structure-specific magnetic field inhomogeneities. J Magn 
Reson 2003;163(2):236-247. 

2. Wilson GJ, Springer CS, Jr., Bastawrous S, Maki JH. Human whole blood 1 H2 O 
transverse relaxation with gadolinium-based contrast reagents: Magnetic susceptibility and 
transmembrane water exchange. Magn Reson Med 2017;77(5):2015-2027. 

3. Jensen JH, Chandra R. NMR relaxation in tissues with weak magnetic inhomogeneities. 
Magn Reson Med 2000;44(1):144-156. 

 


	l
	l
	l

